IASET: Journal of Computer Science A International Academy of Science,

and Engineering (IASET: JCSE) 5
ISSN(P): Applied; ISSN(E): Applied Engineering and Technology
Vol. 1, Issue 2, Jul - Dec 2016; 19-24 IASET Connecting Researchers; Nurturing Innovations

© IASET

A CRITICAL ANALYSIS OF COMPONENT-BASED SOFTWARE ENG INEERING

SIKIRU OLANREWAJU SUBAIRU & JOHN ALHASSAN
Department of Cyber Security Science, Federal Unityeof Technology, Minna, Nigeria

ABSTRACT

Component-based software engineering is a solytlmnomenon that came up as a result of high cost of
developing new software; couple with high risk diedd and delay time of delivery of finished softwaféis takes into
consideration the right type of software architeetand then selecting the various adequate compofrem components

repository, integrates them base on the new softwequirements and a new software is born.

This paper critically looks into object orientatisarsus domain engineering, various sources of coeuts such
as re-usable codes, free-ware and free softwdme)Jiopen source software, usable code libranebe internet, software

portability and best practices for component basevare development.
KEYWORDS: Component-Based Software Engineering

INTRODUCTION

Component-based software engineering surfacesrasuét of failure of object-oriented developmentstgpport
reuse adequately and effectively. Many years aisalygs demonstrated that object-oriented developiseincapable to
adapt to ever changing requirement of today apipdicesoftware. This is because it lacks softwashigecture capable to

adapt to changes in current requirement, thoughsily develop a model that shows vividly the danmoblem.

Another shortcoming of object-oriented developmsnhat there is no separation when it comes topedational
and compositional aspect and this separation ishhigeeded to adapt to ever changing requirembig;formed the core
of the component-base software development whictkemia flexible by distinguishing stable componerftem
specification of their composition. Combining thesemponents lead to evolving a new solution soféthat is rapid in
development, quick availability to the market arakily adaptable to changes in requirement. Thisiker another

advantage by investing in changes of those aretieafomponent-based solution than embarking othaneelease.

What the software engineer needs to do is to éstaliie requirement of the new software, come up wie
architectural design and examine each requiremergéee which part of it is amenable to compositiather than
embarking on new construction. In order to esthbifese facts, the following questions are impdarfan each of the

requirement:-
» Availability of commercial off the shelf (COTS) c@mnents capable of implementing the requirement
» Availability of internally reusable components toglement the requirement.

» Availability of component interface that is comiéei with the architecture of the system to be built

www.iaset.us anti@iaset.us



20 Sikiru Olanrewaju Subairu & John Alhassan

.-"'-.-J \\
Copimipdic et h
™ Coamip i Saftwad
repakiory |
.\\ _‘_ 1
'\\\ /
4 i L4
1

seloct azsemb ke

Cotmmieictad Cr-ie-shetl (COTS)

COPIO IS
Figure 1: Component-Based Software Development

componenl repositorny & markel component-hased
T 3 syslems

! :[ﬁ:f Kj_‘_-:_.;_ —>

Figure 2: Simple Model of Component Repository

Sometimes after an analytical examination of sosguirements, some may be found to non-changeable or
adaptable or even non removable. A new componeatisnéo be engineered using conventional or objedénted
software engineering process. This component megt tie requirement of the components. Seriestofitees such as
component qualification, component adaptation, comept composition and component update will haviakte place as

the case may be.
Domain Engineering

This comprises of three basics activities such rasyais, construction and dissemination. AccordiogPaul
Clements; domain engineering is about finding comatiies among systems to identify components that be applied

to many systems and to identify program familiest tire positioned to take fullest advantages cf¢lammponents.

Domain Analysis Process

This process is applied to any paradigm in softwengineering as it applied to both conventionalvadl as

object-oriented software development. Applying friscess may follow these steps:-
» Detailed the domain to be investigated
» Classify the items extracted from the domain
» Take a sample from the application
» Critically examine each application in the sample
« Build an analysis model for the object.

Reusable Codes

This approach has long been sought for, until 1868n Douglas Mcllroy of bell laboratories proposbdt

software industry can be based upon reusable coempoBy so doing, a code that was used in one progt one time

www.iaset.us anti@iaset.us



A Critical Analysis of Component-Based Software Enimeering 21

can be reused in another program at later times; shving time and energy by reducing redundancy.

This practice has to be standardising through awasoé procedure line otherwise known as domainrergging.

Great caution has to be taken so as to avoid abaj@gation which is usually cause by cut and pastgramming.

Communication interface such as call must be ddfioe the newly written codes to interact or useel already

existing codes.
Type of Reuse
Base on certain factors and motivation, reuse eaonie of the following:

e Opportunistic:- This occurs when software engineer realises at#wnning of a project that there exists a

component that can be reuse
« Planned: - This when a software engineers design componetriits teuse in future projects.

» Internal Reuse: - This is when software engineers use their owmpmnents. This decision might be business

based so to control components critical to theqmtoj

» External Reuse: - Software engineers may choose to use third-gamgynse components. License third-party
components cost less than to develop internallypmorant, but it has demerits in terms of time tarcedor it,

learn it and integrate the component.
Freeware and Free Software (LIBRE)

Freeware was coined by Andrew Fluegelman and ibftes being used in 1980s and 1990s for progrdeased
only as executables with the source code not dlaild&reeware do not have a definite definitioritas loosely defined

but according to the free software foundation, uisirbe distinguishable from free software or libofware.

Free software, unlike freeware has no restrictimitst usage. The user can modify it, reengineetedijt, adapt it
to their needs with or without changes. This phesioom makes it a source for components during copmemased
software engineering. This definition for free saite was defined by Richard Stallman and its d@dimistill holds today.
The followings are the definitions:

e Freedom 0:-The freedom to run the program for any purpose.
e Freedom 1:The freedom to study how the program works, arahgh it to make it do what you wish.
* Freedom 2:-The freedom to redistribute copies, so you cap kielr neighbour.

* Freedom 3:- The freedom to improve the program, and release yraprovements (and modified versions in

general) to the public, so that the whole commubégefits.

www.iaset.us anti@iaset.us



22 Sikiru Olanrewaju Subairu & John Alhassan

What is the greatest concern with freeware?

Effaculty Iraining Lack of regisiralion
amployets o #5 use and proof of ewnership
13 78 porcen| 1937 parcan

Fatamtiad lack of customnr support
66.88 parcam

Figure 3: Chart Showing Freeware Peculiar Problem
Open Source Software

Open source software has its code being availatileaacessible to the general public and the adtasrgranted
license to any user to study its code, change #uib one need and distribute it either freely oy ather way. This is

usually developed publicly by collaboration by vatieer or software enthusiast developer.

The license granted is usually for free distribmtend for further development and application. Aamaple of

open source license is the GNU General Pubic Le¢G#L).

g 0
@ QO &

open source

o

Figure 4: Showing the Icon for Open Source and othieDpen Source Softwares

Open source distribution makes source codes alaikid accessible while their licenses allow thth@uto

define how it is going to be accessed.
Software Portability

This concept in software development greatly redumest, since it allow the usability of the saméveare in

different environment platform.

Abstraction is a basic requirement for portabidiyd it occurs between the application logic andesgsnterface.

Software portability involves the following strates:
» Transferring, installed program files to anothempaiter of basically the same architecture.
* Reinstalling a program from distribution files amogher computer of similar architecture.

» Building executable program for different platforfinem source code; otherwise known as porting.

www.iaset.us anti@iaset.us



A Critical Analysis of Component-Based Software Enimeering 23

The following need to be considered for softwargadmlity:-
e Similarity of system
» Different operating system, but similar processor
» Different processor
Reusable Code Libraries on Internet

A typical example of using an already code (reusd)y using software library technique. Informatiamong
different well known format, how to access the ex files, storage, manipulation and so on cowdstore in the
software library. Developers do not need to redmades when he or she can make use of so maeg codhe library to
complete its project.

Library implementation have its benefit but its dathis in the area of inability to get detailsafdes which may

ultimately affects desired output or performancel the time and cost of findings, learning and mpnétion.
Best Practices for Component-Based Software Engineeg

Commencing a project, software engineer needstabléesh the requirement of the new software, comevith
the architectural design and examine each requitemeesee which part of it is amenable to compaositiather than

embarking on new construction.

CemponentBansd et
Dmulﬁpmm Il‘... o m

Tanting

Archatachirg

Aritshysls '_ . Dessign

Component
Engimaaring
! — | e—

Figure 5: An Overview of Best Practices of CompondfBased Software Deveopment Process

Then, the software engineer has to take into censitn the following:

e Component Qualification: - System requirement and architecture define thepoment that will require. The

process of discovery and analysis must be usedalifgjeach component suitability.

e Component Adaptation: - These components must be adapted to meet thieafidbe architecture or discarded

and replaced by other fitted one.

» Component Composition:- This is another area software engineer has tanpu right perspective as it dictates

the composition of the end product.

 Component Update: - Basically, when systems are implemented with mencial-off the shelf (COTS)
component, update is complicated as the owner afetttomponent may be out of organisational consmla

kind of agreement may be reached.

www.iaset.us anti@iaset.us



24 Sikiru Olanrewaju Subairu & John Alhassan

REFERENCES
1. Champ man, M; Van der Merwe, Alta (2008) Saicsid@0South Africa

2. Colombo, F. (2011), "It's not just reuse" - htghédrednow.blogspot.com/2011/05/its-not-just-reusd.hccessed
on 13" June, 2013.

3. Wallace, Bruce (May 19, 2010). "A hole for everymmonent, and every component in its hole"

4. Raphael Gfeller (December 9, 2008). "Upgradingahponent-based application”

5. McConnell, Steve; Rapid Development: Taming Wildt®are Schedules, (1996), ISBN 978-1-55615-900
6. Dinu Madau 2008 "An architecture for designing eis embedded systems software"

7. Verts, William T. (2008-01-13). "Open source softela

8. James D Mooney, Developing portable software, \Weginal University WV26506 USA

9. Roger S. Pressman PhD, Software Engineering, AiRoaer Approach, 8 edition

10. Arvinder Kaur, Kulvinder Singh Mann, Component baseftware engineering, International Journal of
Computer Volume 2 — No.1, May 2010

www.iaset.us anti@iaset.us



